Microfluidics, 10/11-2009

- Surface tension
- Capillary forces
- Ideal gas law
- •Viscosity
- Navier Stokes equation
- •Reynolds number
- Poiseuille flow
- Electroosmotic flow
- •Electrophoresis
- •Mixing

These topics are important for design of well-functioning fluidic microsystems.

A lab-on-a-chip is a miniature laboratory

integrate (multiple) laboratory functions on a single chip of only millimeters to a few square centimeters in size and that are capable of handling extremely small fluid volumes down to less than pico liters.

- Quick: small heat capacities
- Less reagents and sample
- Closed chip less pollution

Functions in:InstrumentorChip

Caliper/Agilent

Polymer components

Manufactured by micro-injection moulding

Fluidic channels and reaction chambers can be made in silicon

- DRIE etched in silicon
- Sealed by glass from above
- Holes for injection of reagents /extraction of products
- Heating elementsTemperature sensors

Gold electrodes di-electro phoresis

Drosophila embryos aligned on gold pattern

Yole 2009: Emerging markets for microfluidic applications

🕥 SIN

Microfluidics applications

EMMA 2009 July 2009 Copyrights © Yole Développement SA. All rights reserved.

In-vitro diagnostics

- Sample taken out of the body
- Blood, salvia, urine, cell smear, biopsies
- Future: from the central laboratories to homes and doctors' offices
- Must be automatic: Sample in answer out
- Reliable results
- Communication of results to doctor or hospital database
- Disposable chip
- Instrument
 - PC sized
 - Hand held

Molecular diagnostics

- Cancer
- Infections (bacteria, virus, parasites)
- Cardiovascular diseases
- Molecular markers
 - DNA, RNA
 - Proteins; antigens, enzymes, hormones
 - Low molecular compounds
- Sample preparation
 - filters, micro-pillars, magnetic beads, separation
- Washing
- (Amplification e.g. PCR)
- Reactions
 - Immunoreactions
 - Hybridization
- Detection
 - Labels (dye, fluorescent, radioactive)
 - Label-free (impedance, electrochemical, amperometric, cantilevers, evanescent fields)
- Choose methods for all steps: SENSITIVITY + SPECIFICITY

ICT

Roche AmpliChip Pharmacogenetic microarray based test

Gyros, Swedish life science company

DiagnosisDrug discovery

ICT

www.gyros.com

Cepheid GeneXpert

Microfluidic construction kit

Integration of several polymer slides

<u>The idea:</u> modular concept as an intermediate step on the way to integrated systems

Library of standard slides: pumps, mixers, splitters

Microfluidics allow for <u>controlled</u> liquid handling:

ThinXXS design kit slides: microBUILDER

Reagent integration Excellent, liquid and gass barriers

Multifunctional slide for DNA extraction

ICT

Microfluidic functionalities are readily combined with a variety of sensor and actuator systems as well as a variety surface modifications (Biofunctional layers)

Surface modification

- Hydrophilic / hydrophobic surfaces
- Wetting/non-wetting droplets
- Fuktende/ ikke-fuktende væsker
- Lithographic patterning
 E.g. deposition of self-assembled -monolayers

Wetting / Non-wetting

- Contact angle depends on the solid/liquid/gas that meet in one point
- Wetting fluid: Contact angle < 90</p>
- Non-wetting: Contact angle > 90

Surface tension

- Surface between two fluids
 - Gas-Liquid
 - Liquid-Liquid
- Energy per surface area

Surface tension along periphery Pressure on section area

$$2\pi r\Gamma = \Delta P\pi r^2$$

Pressure difference outside/inside drop: $\Lambda P = 2\Gamma / r$

Capillary rise Senturia 13.2.3

- A liquid that wets the walls will rise to a height h in a capillary tube
- Equilibrium is when weight of liquid column equals surface forces that pull meniscus up

Forces:

- Surface forces pull meniscus up 2πrΓcosΘ
- Gravity pull liquid down ρgh πr²

$$\rho g h \pi r^2 = 2\pi \Gamma \cos \Theta$$

Definition of wetting angle

Can be modified by (chemical) surface treatment

Ideal Gas Law

- Equation of state for (ideal) gasespV=NkT
- k=1.38 10⁻²³ J/K, Boltzmann constant
- Senturia:

$$P = \rho_m(\frac{R}{M_W})T$$

R=8.31 J/(mol K), universal gas constant

State variables

- ∨ volume
- P absolute pressure

ICT

T absolute temperature

Exercise: Fluid volume in capillary "dead-end"

Where does the meniscus stop?

What is the volume that is pulled into the narrow capillary?

Viscosity Senturia 13.2.1

- Deformation of fluids in the presence of shear forces
- The property of a fluid that resists the action of a shear force
- η[Pa s]
- Newtonian fluid:

$$\tau = \eta \frac{U}{h}$$

Navier-Stokes equation

Conservation of mass

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0$$

Newton's 2nd law for a fluid

$$\rho(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v}) = \nabla p + \eta \nabla^2 \vec{v}$$

Reynolds number

- Laminar or turbulent flow?
- Ratio of inertial forces to viscous forces
- Reynolds number: ratio of kinetic energy of a volume of fluid in the flow

to

the energy dissipated by the volume in the shear caused by interaction with its solid boundaries $\operatorname{Re} = \frac{\rho UL}{\eta}$

- •Microchannel:
- •1 cm long
- •1 mm wide
- •100 μm deep
- •L=50 μm
- •p=1000 kg/m²
- •η=0.001 kg/ms
- Laminar for flow speeds less than 10m/s

Poiseuille flow

- Pressure driven flow in channel
- Pressure drop along channel
- Steady flow
- Incompressible flow
- Flow in x-direction, only
- No-slip boundary equations

$$\eta \frac{\partial^2 U_x}{\partial^2 y} + \frac{\Delta p}{L} = 0$$

Integrate twice :

$$U_x(y) = -\frac{1}{2\eta} \frac{\Delta p}{L} y^2 + c1y + c2$$

No slip boundary condition gives :

$$U_x(y) = \frac{1}{2\eta} \frac{\Delta p}{L} \left[\left(a/2 \right)^2 - y^2 \right]$$

Flow rate:

$$Q = \int_{0}^{l_z} dz \int_{-a/2}^{a/2} U_x(y) dy$$

$$Q = \frac{l_z a^3}{12\eta} \frac{\Delta p}{L}$$

Circular pipe :

$$Q = \frac{\pi \ a^4}{8\eta} \frac{\Delta p}{L}$$

Poiseuille flow

New Micro Flow Rate Sensor for Standardized Industrial Production

Liv Furuberg Dag Wang Andreas Vogl

Microsystems and Nanotechnology SINTEF Information and Communication Technology

The new design suggests a low-noise, mechanically robust flow sensor

Flow rate sensor

- Measure fluid flow through chip
- Glass-silicon-glass chip
- Laminar flow, low Re numbers
- Differetial pressure sensor (membrane + piezoresistors)
- Narrow channel with pressure drop, Pouseille flow
- Pressure drop ~ 100 -200 Pa
- Integrated thermometer

Channel: 800x1500x10 μm
 Flow rate 2 μl/min

$$\Delta p = \frac{12 \cdot \eta \cdot l \cdot Q}{w \cdot h^3}$$

Electroosmotic Flow

- Flow driven by electric field
- Voltage applied between electrodes immersed in electrolyte

Figure 13.11. Illustrating electroosmotic flow

- Force on fluid near the boundaries, excess of charged particles
- Debye screening layer, typically 10nm

Figure 13.12. Electroosmotic flow profile.

ICT

Disadvantages:

Sensitivity to impurities Ohmic generation of heat Need for high voltages

Solving Navier Stokes

Poiseuille flow vs. electroosmotic flow

Advantage in 3D visualization/detection

Three pictures after creation of fluorecent molecule:

0s

66ms

165ms

Separation based on charge-to-size ratio of molecules.

Separated bands of species

Electrophoresis

- Species carried along with electroosmotic flow
- Drift relative to the moving velocity:

 $v_{ep} = \mu_{ep} \mathcal{E}_x$

- Electrophoretic mobility
- Apply voltages to channels
- Create controlled plug of species
- Separate molecules by charge and volume by electrophoresis

Figure 13.14. Illustrating electrophoretic separation with electroosmotic flow. The voltages used during the injection and separation sequence are described in the text.

- Laminar flow
- Mixing by diffusion only
- Diffusion equation $\frac{\partial C(r,t)}{\partial t} = D\nabla^2 C(r,t)$
- Average displacement of diffusing particle:
 - $l = \sqrt{4Dt}$
 - Diffusion constant for water

$$D = 2.3 \cdot 10^{-9} \,\mathrm{m}^2 \,/\,s$$

Figure 13.16. Illustrating laminar flow when two streams are combined. Mixing occurs only by diffusion.

 Water: Diffusion length after 1 s: 90µm

- On the other hand:
- Characteristic lines become blurred...

ICT

What about larger molecules?

Mixing

ICT

.

DNA Genetic Code Dictates Amino Acid Identity and Order

Nucleotides

- Sugar linkage
- Phosphate linking group
- Amino acid group BASE
- Nucleic acids: adenine A guanine G cytosine C thymine T

Figure 22.1. A cartoon representation of a nucleotide, consisting of a sugar linkage, a phosphate end-group (P) which serves to link to the next nucleotide, and an amino-acid group, the base. (After [131].)

The four nitrogenous bases of DNA are arranged along the sugar- phosphate backbone in a particular order

Polymerase Chain Reaction (PCR)

- Denaturing, separate strands, 95
 °C
- Annealing,

cool in presence of primer 65 °C

 Extension, in presence of nucleotides and enzymes
 (One enzyme is polymerase)

Figure 22.2. Single- and double-stranded DNA fragments.

Figure 22.3. Annealing: the primer can attach to single-stranded DNA wherever the target sequence is complementary to the primer sequence.

PCR - cycles

- Copies start at a particular point of DNA chain, extend other way without limit
- Singly terminated chains
- Repeat denature-anneal cycle

Figure 22.4. After the first extension reaction, the original DNA strands are copied as singly-terminated strands, each one starting from the point of attachment and extending from the 3' end.

Figure 22.5. After the second anneal, primer can attach to all four strands.

Amplification after 20 cycles

- Start with N₀ DNA molecules
- N cycles
- n * N₀ singly terminated strands
- Number of doubly terminated strands more than doubles each cycle
 - $N_{D}(n) = 2 N_{D}(n-1) + n N_{0}$
- 20 cycles: 2¹⁹ = 542000 doublyterminated strands

Figure 22.6. After the second extension cycle, there are original, singly-terminated, and doubly-terminated strands.

PCR reactor, batch system

- Thermal time constant of chamber
- Chamber 25 μl
- length: 10 mm height: 0.5 mm
- Heating 35°C/s
- Throughput 58 nl/s

Figure 22.8. The miniaturized PCR chamber reported by Northrup [134].

ICT

(Northrup et al)

PCR Batch system, with thermal isolation

- Thermal time constant of chamber
- Chamber 2 μl
- Heating 60-90°C/s
- Heating and cooling pr- cycle: 1.5s
- (Daniel et al.)

PCR flow system

 Continuos flow through channels
 Shaded areas at defined temperatures

- No ramping necessary
- Relative time spent in each zone is fixed
- Max flow rate through system: 72 nl/s
 Channel dimension: 40 μm x 90 μm

Figure 22.12. A continuous-flow PCR system [136]. A two-layer glass sample with flow channels etched into it is clamped to a support containing three copper heat sinks, each one controlled to a fixed temperature. As fluid flows through the channel, it encounters a typical PCR temperature cycle.

Temperature control in PCR chamber

- a) Measure temperature in silicon wall
 - Feedback: Wall temperature tracks set-point temperature very closely. Fluid temperature lags with exponential responses.
- b) Measure temperature in fluid cavity
 Feedback: Wall temperature overshoots, not acceptable!

